DREB2C interacts with ABF2, a bZIP protein regulating abscisic acid-responsive gene expression, and its overexpression affects abscisic acid sensitivity.
نویسندگان
چکیده
ABF2 is a basic leucine zipper protein that regulates abscisic acid (ABA)-dependent stress-responsive gene expression. We carried out yeast two-hybrid screens to isolate genes encoding ABF2-interacting proteins in Arabidopsis (Arabidopsis thaliana). Analysis of the resulting positive clones revealed that two of them encode an AP2 domain protein, which is the same as AtERF48/DREB2C. This protein, which will be referred to as DREB2C, could bind C-repeat/dehydration response element in vitro and possesses transcriptional activity. To determine its function, we generated DREB2C overexpression lines and investigated their phenotypes. The transgenic plants were ABA hypersensitive during germination and seedling establishment stages, whereas primary root elongation of seedlings was ABA insensitive, suggesting developmental stage dependence of DREB2C function. The DREB2C overexpression lines also displayed altered stress response; whereas the plants were dehydration sensitive, they were freezing and heat tolerant. We further show that other AP2 domain proteins, DREB1A and DREB2A, interact with ABF2 and that other ABF family members, ABF3 and ABF4, interact with DREB2C. Previously, others demonstrated that ABF and DREB family members cooperate to activate the transcription of an ABA-responsive gene. Our result implies that the cooperation of the two classes of transcription factors may involve physical interaction.
منابع مشابه
ARIA, an Arabidopsis arm repeat protein interacting with a transcriptional regulator of abscisic acid-responsive gene expression, is a novel abscisic acid signaling component.
Arabidopsis (Arabidopsis thaliana) genome contains more than 90 armadillo (arm) repeat proteins. However, their functions are largely unknown. Here, we report that an Arabidopsis arm repeat protein is involved in abscisic acid (ABA) response. We carried out two-hybrid screens to identify signaling components that modulate ABA-responsive gene expression. Employing a transcription factor, ABF2, w...
متن کاملDifferential expression of BnSRK2D gene in two Brassica napus cultivars under water deficit stress
The sucrose non-fermenting 1-related protein kinase 2 (SnRK2) family members are plant unique serine/threonine kinases which play a key role in cellular signaling in response to abiotic stresses. The three SnRK2 members including SRK2D, SRK2I and SRK2E are known to phosphorylate major abscisic acid (ABA) responsive transcription factors, ABF2 and ABF4, involved in an ABA-dependent stress signal...
متن کاملFour Arabidopsis AREB/ABF transcription factors function predominantly in gene expression downstream of SnRK2 kinases in abscisic acid signalling in response to osmotic stress
Under osmotic stress conditions such as drought and high salinity, the plant hormone abscisic acid (ABA) plays important roles in stress-responsive gene expression mainly through three bZIP transcription factors, AREB1/ABF2, AREB2/ABF4 and ABF3, which are activated by SNF1-related kinase 2s (SnRK2s) such as SRK2D/SnRK2.2, SRK2E/SnRK2.6 and SRK2I/SnRK2.3 (SRK2D/E/I). However, since the three ARE...
متن کاملDual Function of NAC072 in ABF3-Mediated ABA-Responsive Gene Regulation in Arabidopsis
The NAM, ATAF1/2, and CUC2 (NAC) domain proteins play various roles in plant growth and stress responses. Arabidopsis NAC transcription factor NAC072 has been reported as a transcriptional activator in Abscisic acid (ABA)-responsive gene expression. However, the exact function of NAC072 in ABA signaling is still elusive. In this study, we present evidence for the interrelation between NAC072 an...
متن کاملExpression of Stipa purpurea SpCIPK26 in Arabidopsis thaliana Enhances Salt and Drought Tolerance and Regulates Abscisic Acid Signaling
Stipa purpurea (S. purpurea) is the dominant plant species in the alpine steppe of the Qinghai-Tibet Plateau, China. It is highly resistant to cold and drought conditions. However, the underlying mechanisms regulating the stress tolerance are unknown. In this study, a CIPK gene from S. purpurea (SpCIPK26) was isolated. The SpCIPK26 coding region consisted of 1392 bp that encoded 464 amino acids...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Plant physiology
دوره 153 2 شماره
صفحات -
تاریخ انتشار 2010